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Abstract 
 
Dynamic Programming is an algorithm or method in solving complex problems by 

describing how to solve them in several stages by dividing the problem into simpler 
problems. So that each stage of completion is related to each other until a final 
solution is produced. The Knapsack problem is a combinatorial problem, which is 
given a set of items, each of which has a weight and value. Knapsack solution using 
Dynamic Programming does not always get optimal results.   
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Introduction 

Dynamic Programming is an algorithm or method in solving complex problems by 
describing how to solve them in several stages by dividing the problem into simpler 
problems. So that each stage of completion is related to each other until a final 
solution is produced. The idea of this dynamic program is very simple, if it has been 
solved with input in such a way, the solution is saved for future reference where if the 
same problem is found then there is no need to recompute. If a problem is given 
which is divided into several sub-problems and the sub-problems overlap with 
problems that have been solved previously, there is no need to search for solutions 
to these sub-problems. There are two ways in dynamic programming, namely Top-
Down which is also known as memoization and Bottom-Up[1].  

Dynamic Programming is commonly used in the fields of mathematics, 
bioinformatics, computer science, and economics. Not all problems can be solved by 
dynamic programs, problems that are usually solved by dynamic programs are 
optimization problems. Besides being used to find solutions to problems, dynamic 
programs are also commonly used to find the optimal number of solutions that can be 
generated, such as the problem of currency exchange and integer knapsack. Some 
examples of common problems that can be solved using dynamic programs are 
finding the shortest tour of a graph, Traveling Salesman Person (TSP) problems, 
capital budgeting problems (Capital Budgeting), integer knapsack, Sequence 
alignment, Fibonacci sequences, and various other problems. 

The Knapsack Problem is an optimization problem that can be solved by several 
standard algorithms. The Knapsack problem is a combinatorial problem, where given 
a set of items each having a weight and value, the problem is how to choose which 
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items to include in the knapsack with the optimal total value and the total weight must 
be less than or equal to the size of the knapsack[2]. 

This paper will discuss about solving knapsack cases using Dynamic 
Programming. 

 

Method 
 
Problem Knapsack 
 
In general there are two types of Knapsack problems. The first type is 0-1 

Knapsack. The formal definition of 0-1 Knapsack is, suppose there are n items[3]: 
S = {item1, item2, item3,…..itemn} 
wi = itemi weight  
pi = itemi profit  
W = max capacity knapsack. 
With wi, pi and W being positive integer numbers, then find the subset of A 

members of S such that: 
∑ 𝑃𝑖𝑖𝑡𝑒𝑚 𝑖  ∈  𝐴  maximum, ∑ 𝑤𝑖 ≤ 𝑊𝑖𝑡𝑒𝑚 𝑖  ∈  𝐴 . 

In other words, the 0-1 Knapsack problem is how to take as many items as 
possible and put them in a knapsack with a capacity of W, with the total item weight 
must be less than or equal to W. 

While the second type is Fractional Knapsack. In this type of Knapsack, we don't 
have to take the whole item i. Item i may be taken in parts. 

 
Dynamic Programming 
 
In dynamic programming, the solution characteristics are as follows[4]:  
1. There are a finite number of possible options to choose from.  
2. Solutions are completed in stages; Each stage of the solution is built from 

the results of the solution of the previous stage.  
3. To limit the options that must be considered at each stage, optimization 

requirements and constraints are used. 
The series of decisions made in a dynamic programming such that the optimal is 

determined by the optimality principle. Basically the principle of optimality reads as 
follows: "if the total solution is optimal, then the part of the solution up to the nth 
stage is also optimal". With the principle of optimality, then if we work from stage n to 
stage n + 1, we can use the optimal result at stage n without recomputing from the 
initial stage. 

The steps for developing dynamic programming algorithms are as follows: 
1. Establish a recursive property that gives the solution to an instance of the 

problem 
2. Solve an instance of the problem in a bottom-up fashion by solving smaller 

instance first 
 
Testing Data 
 
The testing of these two algorithms will be carried out on one case sample, each 

consisting of 4 items with varying profits and weights as shown in table 1, with a 
knapsack capacity of 10. 
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 T a b l e  1  

Data Test 
 
 

 

 

 

 
 

 

 

 

 
 

Item Profit Weight Density 

1 50 2 25 

2 40 5 8 

3 60 10 6 

4 15 3 5 

 
Result and Analysis 
Result 
 
The first step is to determine the recurrence relation as follows: 

                0                                    if i=0  or j=0 
V(i,j) =    V(i-1,j)                         if wi>j 
               max{V(i-1,j),  
                       V(i-1,j-wi)+ pi }     if wi<=j 
 
 
 
Then make a matrix with rows (i) 0-n (number of items), and columns are 0-

knapsack capacity so that the matrix is formed as follows: 
 

  0 1 2 3 4 5 6 7 8 9 10 

0            

1            

2            

3            

4            

 
Iterate over the recurrence relation:           
         i=0 

  0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1            

2            

3            

4            

 
         i=1 

  0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 50 50 50 50 50 50 50 50 50 

2            

3            

4            

 
i=2 
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  0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 50 50 50 50 50 50 50 50 50 

2 0 0 50 50 50 50 50 90 90 90 90 

3            

4            

 
i=3 

  0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 50 50 50 50 50 50 50 50 50 

2 0 0 50 50 50 50 50 90 90 90 90 

3 0 0 50 50 50 50 50 90 90 90 90 

4            

 
i=4 

  0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 50 50 50 50 50 50 50 50 50 

2 0 0 50 50 50 50 50 90 90 90 90 

3 0 0 50 50 50 50 50 90 90 90 90 

4 0 0 50 50 50 65 65 90 90 90 105 

 
Optimal results are achieved when the selected items are 1, 2 and 4 with a total 

profit of 105 and a total weight of 10.  
 
Analysis 
 
Computational repetition can be avoided by using temporary tables that hold the 

results or solutions that are solved in sub-problems in certain stages. So that in the 
next stage, the solution in the previous stage can be used by looking at the table that 
has been made. Thus, dynamic programs will run with faster execution times.  

Knapsack problem solving with Dynamic Programming does not always reach the 
optimal solution.   

 
Conclusion 

Knapsack problem solving with Dynamic Programming does not always reach the 
optimal solution. Computational repetition can be avoided by using temporary tables 
that hold the results or solutions that are solved in sub-problems in certain stages. So 
that in the next stage, the solution in the previous stage can be used by looking at the 
table that has been made. Thus, dynamic programs will run with faster execution 
times 
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