Construction of New Genetic Tools for Protein Overexpression in E. coli-Pseudomonas host systems
Keywords:
pSIT/RTX, overexpression, elastase strain K, rapid purification, RTX-tagAbstract
This study reported the construction of a new Escherichia coli-Pseudomonas shuttle vector for overexpression of elastase strain K in both E. coli and Pseudomonas as well as for rapid purification using the new RTX-tag. A 6.5 kb novel shuttle vector, designated as pSIT/RTX, was constructed from pCon2(3) in order to improvise the expression of pCon2(3). pSIT/RTX was harbour a tightly regulated promoter PT7(A1/O4/O3), for controlling gene expression; stabilising fragment (SF) for replication and the maintenance of plasmid in E. coli and P. aeruginosa; attB gene for genome integration; elastase strain K as the passenger enzyme and RTX-tag rapid purification. E. coli TOP10/pSIT/RTX was chosen to proceed with purification as the highest amount of proteolytic activity was detected at 12 h after incorporation with 0.6 mM IPTG (Isopropyl β- d-1-thiogalactopyranoside); the pSIT/RTX showed a clear difference between culture in Luria-Bertani broth without ampicillin (5.4 X103 CFU) and 3.6 X103 CFU for culture in ampicillin.
Downloads
References
Assenberg, R., et al., Advances in recombinant protein expression for use in pharmaceutical research. Current opinion in structural biology, 2013. 23(3): p. 393-402.DOI: https://doi.org/10.1016/j.sbi.2013.03.008.
Baneyx, F. and M. Mujacic, Recombinant protein folding and misfolding in Escherichia coli. Nature biotechnology, 2004. 22(11): p. 1399-1408.DOI: https://doi.org/10.1038/nbt1029.
Harris, A.J., Development and application of variable strength expression vectors in Shewanella oneidensis MR-1. 2014.
Osasumwen, O.F., et al., Implications of the release of Chibok girls on Nigeria’s war on terrorism.Covenant University Journal of Politics and International Affairs, 2017. 5(1).
Coêlho, D.F., et al., Azocasein substrate for determination of proteolytic activity: Reexamining a traditional method using bromelain samples. BioMed Research International, 39-62., 2016. 2016.DOI: https://doi.org/10.1155/2016/8409183.
De Mey, M., et al., Minimizing acetate formation in E. coli fermentations. Journal of Industrial Microbiology and Biotechnology, 2007. 34(11): p. 689-700.DOI: https://doi.org/10.1007/s10295-007- 0244-2.
Dehkordi, A.J. and H.M.M. Sadeghi, Optimization of Vasopressin Type 2 Receptor Expression in Escherichia coli BL21. 2016.
Liu, L., et al., How to achieve high-level expression of microbial enzymes: strategies and perspectives.Bioengineered, 2013. 4(4): p. 212-223.DOI: https://doi.org/10.4161/bioe.24761.
Rolfe, M.D., et al., Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation. Journal of bacteriology, 2012. 194(3): p. 686-701.DOI: https://doi.org/10.1128/JB.06112-11.
Maj, A., et al., Plasmids of carotenoid-producing Paracoccus spp.(Alphaproteobacteria)-structure, diversity and evolution. PLoS One, 2013. 8(11): p. e80258.DOI: https://doi.org/10.1371/journal.pone.0080258.
Wong, C.F., et al., Organic‐solvent stability of elastase strain K overexpressed in an Escherichia– Pseudomonas expression system. Biotechnology and applied biochemistry, 2010. 57(1): p. 1-7.DOI: https://doi.org/10.1042/BA20100224.
Pitzer, J., et al., Novel DNA and RNA elements, in Synthetic biology. 2016, Springer. p. 65-99.DOI: https://doi.org/10.1007/978-3-319-22708-5_2.
Lanzer, M. and H. Bujard, Promoters largely determine the efficiency of repressor action. Proceedings of the National Academy of Sciences, 1988. 85(23): p. 8973-8977.DOI: https://doi.org/10.1073/pnas.85.23.8973.
Fulcrand, G., et al., DNA supercoiling, a critical signal regulating the basal expression of the lac operon in Escherichia coli. Scientific reports, 2016. 6(1): p. 1-12.DOI: https://doi.org/10.1038/srep19243.
Egharevba, O., Cloning and Expression of Four Laccase genes isolated from Arctic marine Psychrobacter strains in Escherichia coli and psychrophilic Pseudomonas. 2017.
Gasteiger, E., et al., ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic acids research, 2003. 31(13): p. 3784-3788.DOI: https://doi.org/10.1093/nar/gkg563.
Hoge, R., et al., Weapons of a pathogen: proteases and their role in virulence of Pseudomonas aeruginosa. Current research, technology and education topics in applied microbiology and microbial biotechnology, 2010. 2: p. 383-395.
Madar, D., et al., Promoter activity dynamics in the lag phase of Escherichia coli. BMC systems biology, 2013. 7(1): p. 1-13.DOI: https://doi.org/10.1186/1752-0509-7-136.
Márquez, D.L. and L.M. García, Evaluation of Plasmid Stability by Negative Selection in Gram-negative Bacteria. Bio-protocol, 2017. 7(9).DOI: https://doi.org/10.21769/BioProtoc.2261.
Moore, S.J., et al., EcoFlex: a multifunctional MoClo kit for E. coli synthetic biology. ACS Synthetic Biology, 2016. 5(10): p. 1059-1069.DOI: https://doi.org/10.1021/acssynbio.6b00031.
Zhang, J., et al., INTEGRATE: gene fusion discovery using whole genome and transcriptome data.Genome research, 2016. 26(1): p. 108-118.DOI: https://doi.org/10.1101/gr.186114.114.
Gilbertsen, A. and B. Williams, Development of a Pseudomonas aeruginosa agmatine biosensor.Biosensors, 2014. 4(4): p. 387-402.DOI: https://doi.org/10.3390/bios4040387.
Chenal, A., A.C. Sotomayor Perez, and D. Ladant, Structure and function of RTX toxins. The comprehensive sourcebook of bacterial protein toxins, 2015. 4: p. 677-718.DOI: https://doi.org/10.1016/B978-0-12-800188-2.00023-9.
Morgan, J.L.W., J.F. Acheson, and J. Zimmer, Structure of a type-1 secretion system ABC transporter.Structure, 2017. 25(3): p. 522-529.DOI: https://doi.org/10.1016/j.str.2017.01.010.
Sotomayor-Pérez, A.-C., D. Ladant, and A. Chenal, Disorder-to-order transition in the CyaA toxin RTX domain: implications for toxin secretion. Toxins, 2015. 7(1): p. 1-20.DOI: https://doi.org/10.3390/toxins7010001.
Wong, C.F., et al., Construction of New Genetic Tools as Alternatives for Protein Overexpression in Escherichia coli and Pseudomonas aeruginosa. Iranian Journal of Biotechnology, 2017. 15(3): p. 194.DOI: https://doi.org/10.15171/ijb.1524.
Yamabhai, M., et al., Efficient E. coli expression systems for the production of recombinant β- mannanases and other bacterial extracellular enzymes. Bioengineered bugs, 2011. 2(1): p. 45-49.DOI: https://doi.org/10.4161/bbug.2.1.13419.
Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17): 3389-3402. . 1997.DOI: https://doi.org/10.1093/nar/25.17.3389.
Subramaniam, S., The Biology Workbench--a seamless database and analysis environment for the biologist. 1998. p. 1-2.
Choi, T.-J. and T.T. Geletu, High level expression and purification of recombinant flounder growth hormone in E. coli. Journal of Genetic Engineering and Biotechnology, 2018. 16(2): p. 347-355.DOI: https://doi.org/10.1016/j.jgeb.2018.03.006.
Wang, H., et al., Improving the expression of recombinant proteins in E. coli BL21 (DE3) under acetate stress: an alkaline pH shift approach. PloS one, 2014. 9(11): p. e112777.DOI: https://doi.org/10.1016/j.pep.2014.01.008.
Schröder, C., et al., Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens. Applied and environmental microbiology, 2013. 79(11): p. 3494-3502.DOI: https://doi.org/10.1128/AEM.03693-12.
Rizkia, P.R., et al., Effect of Isopropyl-β-D-thiogalactopyranoside concentration on prethrombin-2 recombinan gene expression in Escherichia coli ER2566. Procedia Chemistry, 2015. 17: p. 118- 124.DOI: https://doi.org/10.1016/j.proche.2015.12.121.
Ravishankar, S., et al., An IPTG inducible conditional expression system for mycobacteria. PLoS One, 2015. 10(8): p. e0134562.DOI: https://doi.org/10.1371/journal.pone.0134562.
Dolan, K., et al., Global burden of HIV, viral hepatitis, and tuberculosis in prisoners and detainees. The Lancet, 2016. 388(10049): p. 1089-1102.DOI: https://doi.org/10.1016/S0140-6736(16)30466-4.
Shafiee, F., M. Rabbani, and A. Jahanian-Najafabadi, Optimization of the expression of DT386-BR2 fusion protein in Escherichia coli using response surface methodology. Advanced biomedical research, 2017. 6.DOI: https://doi.org/10.4103/2277-9175.201334.
Malik, A., et al., Optimization of expression and purification of HSPA6 protein from Camelus dromedarius in E. coli. Saudi Journal of Biological Sciences, 2016. 23(3): p. 410-419.DOI: https://doi.org/10.1016/j.sjbs.2015.04.017.
Alfasi, S.N., Physiological aspects underpinning recombinant protein production in Escherichia coli.2011.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Author
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.