COMPARISON OF UNDERWATER IMAGE PROCESSING AND RESTORATION USING SEA- THRU AND HAZE-LINES ALGORITHM

Authors

  • Annisa Alifiani Informatics Engineering, Widyatama University Jl. Cikutra No.204A, Sukapada, Kec. CibeunyingKidul, Kota Bandung, Jawa Barat 40125 Author
  • Nugrah R Pratama Informatics Engineering, Widyatama University Jl. Cikutra No.204A, Sukapada, Kec. CibeunyingKidul, Kota Bandung, Jawa Barat 40125 Author
  • Tresna N Akbarani Informatics Engineering, Widyatama University Jl. Cikutra No.204A, Sukapada, Kec. CibeunyingKidul, Kota Bandung, Jawa Barat 40125 Author
  • Muhammad Abdillah N Hanif Informatics Engineering, Widyatama University Jl. Cikutra No.204A, Sukapada, Kec. CibeunyingKidul, Kota Bandung, Jawa Barat 40125 Author
  • Nurul Ramdan Informatics Engineering, Widyatama University Jl. Cikutra No.204A, Sukapada, Kec. CibeunyingKidul, Kota Bandung, Jawa Barat 40125 Author
  • Yan Puspitarani Informatics Engineering, Widyatama University Jl. Cikutra No.204A, Sukapada, Kec. CibeunyingKidul, Kota Bandung, Jawa Barat 40125 Author

Keywords:

Sea-Thru, Haze-Lines, restoration, image, underwater

Abstract

The picture which is taken without good lighting will have a shortcoming such as low contrast and discoloration. The lack of light received by objects is usually affected by the position of the object that might be out of camera range or disturbed by fog or water. In this research, we compare image processing and restoration algorithms to restore underwater images that have low contrast and discoloration compared to the real object. The sample images that we use in this restoration process are taken from the Sea-Thru dataset. The results of this research will display the results of the restoration of each algorithm and analyze the comparison of color restoration, transmission restoration, air-light estimation, and counting the RGB channel. With all comparisons, the strengths and weaknesses of the Sea-Thru and Haze-Lines algorithms will be shown, which are the Sea-Thru result is more successful in displaying object colors clearly but still has shortcomings when the angle of sampling image is down, while the Haze-Lines result has more stable in any angles of sampling image.

Downloads

Download data is not yet available.

References

Akkaynak, D. and T. Treibitz. Sea-thru: A method for removing water from underwater images. in Conference on Computer Vision and Pattern Recognition. 2019. DOI: https://doi.org/10.1109/CVPR.2019.00178.

Berman, D., et al., Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE transactions on pattern analysis and machine intelligence, 2020. 43(8): p. 2822-2837 DOI: https://doi.org/10.1109/TPAMI.2020.2977624.

Zhang, L., et al., A wireless communication scheme based on space-and frequency-division multiplexing using digital metasurfaces. Nature electronics, 2021. 4(3): p. 218-227 DOI: https://doi.org/10.1038/s41928-021-00554-4.

Tan, L.K., Image file formats. Biomed Imaging Interv J, 2006. 2(1): p. e6 DOI: https://doi.org/10.2349/biij.2.1.e6.

BermanD, T., AvidanS. Non localimagedehazing. 2016IEEEConferenceonComputerVisionandPat ternRecognition (CVPR). IEEE, 2016 DOI: https://doi.org/10.1109/CVPR.2016.185.

Steiner, T., et al., European Stroke Organization guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovascular diseases, 2013. 35(2): p. 93-112 DOI: https://doi.org/10.1159/000346087.

Berman, D., T. Treibitz, and S. Avidan. Air-light estimation using haze-lines. 2019. IEEE DOI: https://doi.org/10.1109/ICCPHOT.2017.7951489.

Riaz, S., et al., Visibility Restoration Using Generalized Haze-Lines. Inf. Technol. Control., 2021.50(1): p. 188-207 DOI: https://doi.org/10.5755/j01.itc.50.1.27900.

Dollár, P. and C.L. Zitnick. Structured forests for fast edge detection. 2018. DOI: https://doi.org/10.1109/ICCV.2013.231.

Jerlov, N.G., Marine optics. 1976: Elsevier.

Berman, N., et al., This mine is mine! How minerals fuel conflicts in Africa. American Economic Review, 2017. 107(6): p. 1564-1610 DOI: https://doi.org/10.1257/aer.20150774.

Downloads

Published

2022-06-30

How to Cite

Alifiani, A., Pratama, N. R., Akbarani, T. N., Hanif, M. A. N., Ramdan, N., & Puspitarani, Y. (2022). COMPARISON OF UNDERWATER IMAGE PROCESSING AND RESTORATION USING SEA- THRU AND HAZE-LINES ALGORITHM. CENTRAL ASIA AND THE CAUCASUS, 23(2), 152-163. https://ca-c.org/CAC/index.php/cac/article/view/21

Plaudit

Similar Articles

31-40 of 187

You may also start an advanced similarity search for this article.