ADVANCEMENT OF TiO2-BASED PHOTOCATALYST FOR PHOTODEGRADATION OF ORGANIC POLLUTANTS IN WASTEWATER

Authors

  • Nurul Adilah Mohd Noor Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia Author
  • Siti Munirah Sidik Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia Author
  • Mohamad Saufi Rosmi Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia Author
  • Che Ku Nor Liana Che Ku Hitam School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bharu, Johor, Malaysia Author
  • Nur Farhana Jaafar School of Chemical Sciences, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia Author

Keywords:

TiO2, Synthesis method, Mesoporous material, Metal doping, Photodegradation, Organic pollutant

Abstract

 Photocatalytic degradation has gained attention as an environmental friendly technology as it offers mild reaction conditions for wastewater treatment. The present review mainly describes the strategies to improve the photodegradation of organic pollutants through modification of TiO2-based photocatalyst since TiO2 has several disadvantages, like wide band gap (Eg) (3.2 eV) and quick recombination of photogenerated charges that inhibit its full potential towards photocatalysis. Therefore, much effort to obtain excellent photocatalytic performance that includes using mesoporous materials and the addition of metal doping into the TiO2 are highlighted to propose a mechanistic study of promising photocatalytic method. Incorporating mesoporous materials within the TiO2 enhance the interaction of organic pollutant and photocatalyst as it produces large surface areas that improve the photocatalytic activity. Doping with metal will suppress the recombination between electron/hole pairs produced on photon absorption as it acts as electron sinks that may improve the photocatalytic performance by the quantum yield of superoxide radicals.

Downloads

Download data is not yet available.

References

Sescu, A.M., et al., TiO2 doped with noble metals as an efficient solution for the photodegradation of hazardous organic water pollutants at ambient conditions. Water, 2021. 13(1): p. 19.DOI: https://doi.org/10.3390/w13010019.

Chen, W., et al., Non-noble metal Co as active sites on TiO2 nanorod for promoting photocatalytic H2 production. Materials Research Bulletin, 2019. 116: p. 16-21.DOI: https://doi.org/10.1016/j.materresbull.2019.04.011.

Altın, İ., M. Sökmen, and Z. Bıyıklıoğlu, Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal. Materials Science in Semiconductor Processing, 2016. 45: p. 36-44.DOI: https://doi.org/10.1016/j.mssp.2016.01.016.

Blanco-Vega, M.P., et al., Photocatalytic elimination of bisphenol A under visible light using Ni-doped TiO2 synthesized by microwave assisted sol-gel method. Materials Science in Semiconductor Processing, 2017. 71: p. 275-282.DOI: https://doi.org/10.1016/j.mssp.2017.08.013.

Radtke, A., et al., The structure and the photocatalytic activity of titania based nanotube and nanofiber coatings. Applied Surface Science, 2016. 368: p. 165-172.DOI: https://doi.org/10.1016/j.apsusc.2016.01.219.

Sood, S., et al., Highly effective Fe-doped TiO2 nanoparticles photocatalysts for visible-light driven photocatalytic degradation of toxic organic compounds. Journal of colloid and interface science, 2015. 450: p. 213-223.DOI: https://doi.org/10.1016/j.jcis.2015.03.018.

Islam, M.T., et al., Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water. Science of the Total Environment, 2020. 704: p. 135406.DOI: https://doi.org/10.1016/j.scitotenv.2019.135406.

Singh, K., et al., Erbium doped TiO2 interconnected mesoporous spheres as an efficient visible light catalyst for photocatalytic applications. Applied Surface Science, 2018. 449: p. 755-763.DOI: https://doi.org/10.1016/j.apsusc.2018.01.279.

He, X., et al., Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review. Science of The Total Environment, 2020. 743: p. 140694.DOI: https://doi.org/10.1016/j.scitotenv.2020.140694.

Razali, N.A. and S.A. Othman, Study of photocatalytic performance of doping titanium dioxide (TiO2).Journal of Science and Mathematics Letters, 2021. 9: p. 72-79.

Singh, T., et al., Application of TiO2 nanoparticle in photocatalytic degradation of organic pollutants. Materials Science Forum, 2016. 855: p. 20-32.DOI: https://doi.org/10.4028/www.scientific.net/MSF.855.20.

Sonu., et al., Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water. Journal of Saudi Chemical Society, 2019. 23: p. 1119- 1136.

Bhanvase, B.A., T.P. Shende, and S.H. Sonawane, A review on graphene–TiO2 and doped graphene– TiO2 nanocomposite photocatalyst for water and wastewater treatment. Environmental Technology Reviews, 2017. 6(1): p. 1-14.DOI: https://doi.org/10.1080/21622515.2016.1264489.

Chanu, L.A., et al., Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using manganese doped ZnO nanoparticles. Results in Physics, 2019. 12: p. 1230- 1237.DOI: https://doi.org/10.1016/j.rinp.2018.12.089.

Pham, X.N., et al., Synthesis of Ag-AgBr/Al-MCM-41 nanocomposite and its application in photocatalytic oxidative desulfurization of dibenzothiophene. Advanced Powder Technology, 2018. 29(8): p. 1827-1837.DOI: https://doi.org/10.1016/j.apt.2018.04.019.

Sun, H., et al., High photodegradation ability of dyes by Fe (III)-tartrate/TiO2 nanotubular photocatalyst supported via photo-Fenton reaction. Journal of Photochemistry and Photobiology A: Chemistry, 2017. 334: p. 20-25.DOI: https://doi.org/10.1016/j.jphotochem.2016.10.033.

Saravanan, R., et al., ZnO/Ag/CdO nanocomposite for visible light-induced photocatalytic degradation of industrial textile effluents. Journal of colloid and interface science, 2015. 452: p. 126-133.DOI: https://doi.org/10.1016/j.jcis.2015.04.035.

Subramaniam, M.N., et al., Adsorption and photocatalytic degradation of methylene blue using high surface area titanate nanotubes (TNT) synthesized via hydrothermal method. Journal of Nanoparticle Research, 2017. 19(6): p. 1-13.DOI: https://doi.org/10.1007/s11051-017-3920-9.

Geng, Y., et al., Synthesis of Co doped BiVO4 with enhanced visible-light photocatalytic activities. Journal of Alloys and Compounds, 2015. 651: p. 744-748.DOI: https://doi.org/10.1016/j.jallcom.2015.08.123.

Anjugam Vandarkuzhali, S.A., et al., Ultrasmall plasmonic nanoparticles decorated hierarchical mesoporous TiO2 as an efficient photocatalyst for photocatalytic degradation of textile dyes. ACS omega, 2018. 3(8): p. 9834-9845.DOI: https://doi.org/10.1021/acsomega.8b01322.

Atchudan, R., et al., In-situ green synthesis of nitrogen-doped carbon dots for bioimaging and TiO2 nanoparticles@ nitrogen-doped carbon composite for photocatalytic degradation of organic pollutants. Journal of Alloys and Compounds, 2018. 766: p. 12-24.DOI: https://doi.org/10.1016/j.jallcom.2018.06.272.

Reddy, P.A.K., et al., Recent advances in photocatalytic treatment of pollutants in aqueous media.Environment international, 2016. 91: p. 94-103.DOI: https://doi.org/10.1016/j.envint.2016.02.012.

Malika, M. and S.S. Sonawane, Statistical modelling for the Ultrasonic photodegradation of Rhodamine B dye using aqueous based Bi-metal doped TiO2 supported montmorillonite hybrid nanofluid via RSM. Sustainable Energy Technologies and Assessments, 2021. 44: p. 100980.DOI: https://doi.org/10.1016/j.seta.2020.100980.

Siddiqa, A., et al., Cobalt and sulfur co-doped nano-size TiO2 for photodegradation of various dyes and phenol. Journal of Environmental Sciences, 2015. 37: p. 100-109.DOI: https://doi.org/10.1016/j.jes.2015.04.024.

Abdennouri, M., et al., Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays. Arabian Journal of Chemistry, 2016. 9: p. S313-S318.DOI: https://doi.org/10.1016/j.arabjc.2011.04.005.

Radtke, A., The structure and the photocatalytic activity of titania based nanotube and nanofiber coatings. Applied Surface Science, 2016. 368: p. 165-172.DOI: https://doi.org/10.1016/j.clay.2017.02.029.

Szczepanik, B., Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review. Applied Clay Science, 2017. 141: p. 227-239.DOI: https://doi.org/10.1016/j.clay.2017.02.029.

Azami, M.S., et al., Formation of an amorphous carbon nitride/titania composite for photocatalytic degradation of RR4 dye. Journal of Water Process Engineering, 2020. 35: p. 101209.DOI: https://doi.org/10.1016/j.jwpe.2020.101209.

Hitam, C.N.C., et al., Effect of carbon-interaction on structure-photoactivity of Cu doped amorphous TiO2 catalysts for visible-light-oriented oxidative desulphurization of dibenzothiophene. Fuel, 2018. 216:p. 407-417.DOI: https://doi.org/10.1016/j.fuel.2017.12.035.

Mohamed, M.A., et al., Carbon as amorphous shell and interstitial dopant in mesoporous rutile TiO2: Bio-template assisted sol-gel synthesis and photocatalytic activity. Applied Surface Science, 2017. 393:p. 46-59.DOI: https://doi.org/10.1016/j.apsusc.2016.09.145.

Parangi, T. and M.K. Mishra, Titania nanoparticles as modified photocatalysts: a review on design and development. Comments on Inorganic Chemistry, 2019. 39(2): p. 90-126.DOI: https://doi.org/10.1080/02603594.2019.1592751.

Anandan, S., T. Sivasankar, and T. Lana-Villarreal, Synthesis of TiO2/WO3 nanoparticles via sonochemical approach for the photocatalytic degradation of methylene blue under visible light illumination. Ultrasonics sonochemistry, 2014. 21(6): p. 1964-1968.DOI: https://doi.org/10.1016/j.ultsonch.2014.02.015.

Al-Mamun, M.R., et al., Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Journal of Environmental Chemical Engineering, 2019. 7(5): p. 103248.DOI: https://doi.org/10.1016/j.jece.2019.103248.

Zhu, D. and Q. Zhou, Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: A review. Environmental Nanotechnology, Monitoring & Management, 2019. 12: p. 100255.DOI: https://doi.org/10.1016/j.enmm.2019.100255.

Teh, C.Y., T.Y. Wu, and J.C. Juan, An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant. Chemical Engineering Journal, 2017. 317: p. 586-612.DOI: https://doi.org/10.1016/j.cej.2017.01.001.

Kumar, A. and G. Pandey, Different methods used for the synthesis of TiO2 based nanomaterials: A review. Am. J. Nano Res. Appl, 2018. 6(1): p. 1-10.DOI: https://doi.org/10.11648/j.nano.20180601.11.

Nasr, M., et al., Recent progress on titanium dioxide nanomaterials for photocatalytic applications.ChemSusChem, 2018. 11(18): p. 3023-3047.DOI: https://doi.org/10.1002/cssc.201800874.

Nasr, M., et al., Enhanced photocatalytic performance of novel electrospun BN/TiO2 composite nanofibers. New Journal of Chemistry, 2017. 41(1): p. 81-89.DOI: https://doi.org/10.1039/C6NJ03088B.

Arfanis, M.K., et al., Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes. Chemical Engineering Journal, 2017. 310: p. 525-536.DOI: https://doi.org/10.1016/j.cej.2016.06.098.

Arfanis, M.K., et al., Photocatalytic properties of copper—Modified core-shell titania Nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry, 2019. 370: p. 145-155.DOI: https://doi.org/10.1016/j.jphotochem.2018.10.051.

Ovodok, E., et al., Synthesis and characterization of efficient TiO2 mesoporous photocatalysts. Materials Today: proceedings, 2017. 4(11): p. 11526-11533.DOI: https://doi.org/10.1016/j.matpr.2017.09.062.

Zhang, Y., et al., Non-uniform doping outperforms uniform doping for enhancing the photocatalytic efficiency of Au-doped TiO2 nanotubes in organic dye degradation. Ceramics International, 2017. 43(12): p. 9053-9059.DOI: https://doi.org/10.1016/j.ceramint.2017.04.050.

Zhang, W., et al., Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. National Science Review, 2020. 7(11): p. 1702-1725.DOI: https://doi.org/10.1093/nsr/nwaa021.

Niu, B., et al., Mesoporous titanium dioxide: Synthesis and applications in photocatalysis, energy and biology. Materials, 2018. 11(10): p. 1910.DOI: https://doi.org/10.3390/ma11101910.

Bagheri, S., et al., Progress on mesoporous titanium dioxide: synthesis, modification and applications. Microporous and Mesoporous Materials, 2015. 218: p. 206-222.DOI: https://doi.org/10.1016/j.micromeso.2015.05.028.

Chowdhury, I.H. and M.K. Naskar, Sol-gel synthesis of mesoporous hollow titania microspheres for photodegradation of 4-chlorophenol. Indian Journal Of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 2018. 57(7): p. 910-914.DOI: https://doi.org/10.1016/j.ceramint.2015.10.049.

Jaafar, N.F., et al., New insights into self-modification of mesoporous titania nanoparticles for enhanced photoactivity: Effect of microwave power density on formation of oxygen vacancies and Ti 3+ defects. RSC advances, 2015. 5(110): p. 90991-91000.DOI: https://doi.org/10.1039/C5RA15120A.

Khalid, N.R., et al., Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceramics International, 2017. 43(17): p. 14552-14571.DOI: https://doi.org/10.1016/j.ceramint.2017.08.143.

Zhiming, S., et al., Effects of Pre-annealing Atmosphere on Microstructure and Photocatalytic Activities of Fe-doped Titania Nanotubes. Rare Metal Materials and Engineering, 2017. 46(11): p. 3244- 3252.DOI: https://doi.org/10.1016/S1875-5372(18)30037-7.

Yu, J. H., et al., Oxidation state and structural studies of vanadium-doped titania particles for the visible light-driven photocatalytic activity. Applied Surface Science, 2018. 472: p. 46-53.DOI: https://doi.org/10.1016/j.apsusc.2018.04.125.

Camarillo, R., et al., Enhancing the photocatalytic reduction of CO2 with undoped and Cu-doped TiO2 nanofibers synthesized in supercritical medium. The Journal of Supercritical Fluids, 2019. 147: p. 70- 80.DOI: https://doi.org/10.1016/j.supflu.2019.02.013.

Mohseni-Salehi, M.S., E. Taheri-Nassaj, and M. Hosseini-Zori, Effect of dopant (Co, Ni) concentration and hydroxyapatite compositing on photocatalytic activity of titania towards dye degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2018. 356: p. 57-70.DOI: https://doi.org/10.1016/j.jphotochem.2017.12.027.

Samet, L., et al., Effect of gamma radiation on the photocatalytic properties of Cu doped titania nanoparticles. Materials Research Bulletin, 2018. 107: p. 1-7.

Humayun, M., et al., Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chemistry Letters and Reviews, 2018. 11(2): p. 86-102.DOI: https://doi.org/10.1080/17518253.2018.1440324.

Fang, W., M. Xing, and J. Zhang, Modifications on reduced titanium dioxide photocatalysts: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017. 32: p. 21-39.DOI: https://doi.org/10.1016/j.jphotochemrev.2017.05.003.

Ribao, P., et al., Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts.Journal of hazardous materials, 2019. 372: p. 45-51.DOI: https://doi.org/10.1016/j.jhazmat.2018.05.026.

Zhang, F., et al., A novel preparation of Ag-doped TiO2 nanofibers with enhanced stability of photocatalytic activity. RSC Advances, 2015. 5(41): p. 32088-32091.DOI: https://doi.org/10.1039/C5RA01353D.

Ali, T., et al., Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Materials Chemistry and Physics, 2018. 212: p. 325-335.DOI: https://doi.org/10.1016/j.matchemphys.2018.03.052.

Lakshmanareddy, N., et al., Pt/TiO2 nanotube photocatalyst–Effect of synthesis methods on valance state of Pt and its influence on hydrogen production and dye degradation. Journal of colloid and interface science, 2019. 538: p. 83-98.DOI: https://doi.org/10.1016/j.jcis.2018.11.077.

Khaki, M.R.D., et al., Application of doped photocatalysts for organic pollutant degradation-A review. Journal of environmental management, 2017. 198: p. 78-94.DOI: https://doi.org/10.1016/j.jenvman.2017.04.099.

Shayegan, Z., C. S. Lee, and F. Haghighat, TiO2 photocatalyst for removal of volatile organic compounds in gas phase–A review. Chemical Engineering Journal, 2018. 334: p. 2408-2439.DOI: https://doi.org/10.1016/j.cej.2017.09.153.

Shafei, A. and S. Sheibani, Visible light photocatalytic activity of Cu doped TiO2-CNT nanocomposite powder prepared by sol–gel method. Materials Research Bulletin, 2019. 110: p. 198-206.DOI: https://doi.org/10.1016/j.materresbull.2018.10.035.

Biru, M., et al., Preparation and Characterization of Copper, Iron, and Nickel Doped Titanium Dioxide Photocatalysts for Decolorization of Methylene Blue. Sains Malaysiana, 2021. 50(1): p. 135-149.DOI: https://doi.org/10.17576/jsm-2021-5001-14.

Ong, C.B., L.Y. Ng, and A.W. Mohammad, A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 2018. 81: p. 536- 551.DOI: https://doi.org/10.1016/j.rser.2017.08.020.

Rodríguez, P.A.O., et al., A simple synthesis way to obtain iron-doped TiO2 nanoparticles as photocatalytic surfaces. Chemical Physics Letters, 2019. 732: p. 136643.DOI: https://doi.org/10.1016/j.cplett.2019.136643.

Nasirian, M., et al., Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: a review. International Journal of Environmental Science and Technology, 2018. 15(9): p. 2009-2032.DOI: https://doi.org/10.1007/s13762-017-1618-2.

Kamble, R., et al., Visible light-driven high photocatalytic activity of Cu-doped TiO2 nanoparticles synthesized by hydrothermal method. Material Science Research India, 2018. 15(3): p. 197-208.DOI: https://doi.org/10.13005/msri/150301.

Basavarajappa, P.S., et al., Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. International Journal of Hydrogen Energy, 2020. 45(13): p. 7764-7778.DOI: https://doi.org/10.1016/j.ijhydene.2019.07.241.

Mbiri, A., et al., Zirconium doped mesoporous TiO2 multilayer thin films: Influence of the zirconium content on the photodegradation of organic pollutants. Catalysis Today, 2019. 328: p. 71-78.DOI: https://doi.org/10.1016/j.cattod.2019.01.043.

Luo, Z., et al., Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chemistry of Materials, 2015. 27(1): p. 6-17.DOI: https://doi.org/10.1021/cm5035112.

Petronella, F., et al., Scalable Synthesis of Mesoporous TiO2 for Environmental Photocatalytic Applications. Materials, 2019. 12(11): p. 1-21.DOI: https://doi.org/10.3390/ma12111853.

Chowdhury, I.H., S. Ghosh, and M.K. Naskar, Aqueous-based synthesis of mesoporous TiO2 and Ag– TiO2 nanopowders for efficient photodegradation of methylene blue. Ceramics International, 2016. 42(2): p. 2488-2496.DOI: https://doi.org/10.1016/j.ceramint.2015.10.049.

Byranvand, M. M., et al., A Review on Synthesis of Nano-TiO2 via Different Methods. Journal of Nanostructures, 2013. 3(1): p. 1-9.DOI: https://doi.org/10.7508/JNS.2013.01.001.

Chen, D., et al., Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review. Journal of Cleaner Production, 2020. p. 1-14.DOI: https://doi.org/10.1016/j.jclepro.2020.121725

Fernandes, A., et al., Integrated photocatalytic advanced oxidation system (TiO2/UV/O3/H2O2) for degradation of volatile organic compounds. Separation and Purification Technology, 2019. 224: p. 1-14.DOI: https://doi.org/10.1016/j.seppur.2019.05.012

Reddy, P.V.L., et al., TiO2-based photocatalytic disinfection of microbes in aqueous media: A review .Environmental Research, 2017. 154: p. 296-303.DOI: https://doi.org/10.1016/j.envres.2017.01.018.

Downloads

Published

2022-01-30

How to Cite

Noor, N. A. M., Sidik, S. M., Rosmi, M. S., Hitam, C. K. N. L. C. K., & Jaafar, N. F. (2022). ADVANCEMENT OF TiO2-BASED PHOTOCATALYST FOR PHOTODEGRADATION OF ORGANIC POLLUTANTS IN WASTEWATER. CENTRAL ASIA AND THE CAUCASUS, 23(1), 2021-2049. https://ca-c.org/CAC/index.php/cac/article/view/266

Plaudit

Similar Articles

11-20 of 298

You may also start an advanced similarity search for this article.