Optical Stiffness of an Optically Trapped 4-Cyano-4’-Pentylbiphenyl (5CB) in the form of a Microdroplet in Water
Keywords:
Optical Trap, Liquid Crystal, 5CB. Microdroplet, Optical Stiffness, WaterAbstract
This study aimed to determine the optical stiffness (
Downloads
References
Czerwinski, F., A.C. Richardson, and L.B. Oddershede, Quantifying noise in optical tweezers by allan variance. Optics express, 2009. 17(15): p. 13255-13269.DOI: https://doi.org/10.1364/OE.17.013255.
Safuan, M., et al., Thickness Dependant Effective Radius of an Optical Trapping Toward Water- Air Interface,” Int. J. Innov. Technol. Explor. Enginnering, vol. 8, no. 8, pp. 91–93. 2019.
Català, F., et al., Influence of experimental parameters on the laser heating of an optical trap.Scientific Reports, 2017. 7(1): p. 1-9.DOI: https://doi.org/10.1038/s41598-017-15904-6.
Ti, C., et al., Objective-lens-free fiber-based position detection with nanometer resolution in a fiber optical trapping system. Scientific reports, 2017. 7(1): p. 1-10.DOI: https://doi.org/10.1038/s41598-017-13205-6.
Dutra, R.d.S., et al., Theory of optical-tweezers forces near a plane interface. Physical Review A, 2016. 94(5): p. 053848.DOI: https://doi.org/10.1103/PhysRevA.94.053848.
Grier, D.G., A revolution in optical manipulation. nature, 2003. 424(6950): p. 810-816.DOI: https://doi.org/10.1038/nature01935.
Hamid, M.Y., et al., Spatial Distribution of an Optically Trapped Bead in Water. Bul. Opt, 2016.2: p. 1-8.
Selhuber-Unkel, C., et al., Quantitative optical trapping of single gold nanorods. Nano letters, 2008. 8(9): p. 2998-3003.DOI: https://doi.org/10.1021/nl802053h.
Maragò, O.M., et al., Optical trapping of carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures, 2008. 40(7): p. 2347-2351.DOI: https://doi.org/10.1016/j.physe.2007.10.088.
Miura, A., et al., Optical Trapping–Microspectroscopy of Single Aerosol Microdroplets in Air: Supercooling of Dimethylsulfoxide Microdroplets. The Journal of Physical Chemistry A, 2020. 124(43): p. 9035-9043.DOI: https://doi.org/10.1021/acs.jpca.0c06179.
Yusof, M.F.M., et al., Optical trapping of organic solvents in the form of microdroplets in water.Chemical Physics Letters, 2020. 749: p. 137407.DOI: https://doi.org/10.1016/j.cplett.2020.137407.
Shechter, J., et al., Direct observation of liquid crystal droplet configurational transitions using optical tweezers. Langmuir, 2020. 36(25): p. 7074-7082.DOI: https://doi.org/10.1021/acs.langmuir.9b03629.
Brasselet*, E., et al., Light-induced nonlinear rotations of nematic liquid crystal droplets trapped in laser tweezers. Molecular Crystals and Liquid Crystals, 2009. 512(1): p. 143-1989.DOI: https://doi.org/10.1080/15421400903050780.
Liu, X., et al., Programmable liquid crystal elastomer microactuators prepared via thiol–ene dispersion polymerization. Soft Matter, 2020. 16(21): p. 4908-4911.DOI: https://doi.org/10.1039/D0SM00817F.
Niu, X., et al., Optical biosensor based on liquid crystal droplets for detection of cholic acid. Optics Communications, 2016. 381: p. 286-291.DOI: https://doi.org/10.1016/j.optcom.2016.07.016.
Wang, Z., et al., Bio-electrostatic sensitive droplet lasers for molecular detection. Nanoscale Advances, 2020. 2(7): p. 2713-2719.DOI: https://doi.org/10.1039/D0NA00107D.
Jain, A.K. and R.R. Deshmukh, An overview of polymer-dispersed liquid crystals composite films and their applications. Liq. Cryst. Disp. Technol, 2020: p. 1-68.
Usman, A., et al., Polarization and droplet size effects in the laser-trapping-induced reconfiguration in individual nematic liquid crystal microdroplets. The Journal of Physical Chemistry B, 2013. 117(16): p. 4536-4540.DOI: https://doi.org/10.1021/jp308596h.
Murazawa, N., S. Juodkazis, and H. Misawa, Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers. Journal of Physics D: Applied Physics, 2005. 38(16):p. 2923.DOI: https://doi.org/10.1088/0022-3727/38/16/027.
Urbanski, M., et al., Liquid crystals in micron-scale droplets, shells and fibers. Journal of Physics: Condensed Matter, 2017. 29(13): p. 133003.DOI: https://doi.org/10.1088/1361-648X/aa5706.
Phanphak, S., et al., Precession mechanism of nematic liquid crystal droplets under low power optical tweezers. Ferroelectrics, 2014. 468(1): p. 114-122.DOI: https://doi.org/10.1080/00150193.2014.933663.
Murazawa, N., S. Juodkazis, and H. Misawa, Laser manipulation of a smectic liquid-crystal droplet. The European Physical Journal E, 2006. 20(4): p. 435-439.DOI: https://doi.org/10.1140/epje/i2006-10033-1.
Roichman, Y., et al., Optical forces arising from phase gradients. Physical review letters, 2008.100(1): p. 013602.DOI: https://doi.org/10.1103/PhysRevLett.100.013602.
Nieminen, T.A., et al., Optical tweezers: Theory and modelling. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014. 146: p. 59-80.DOI: https://doi.org/10.1016/j.jqsrt.2014.04.003.
M. S. M. Yeng, S.K. Ayop, and I.R. Mustapa, Depth - Dependent Optical Stiffness Toward Water - Air Interface,” Int. J. Eng. Technol., vol. 7, pp. 80–84, 2018. 2018.DOI: https://doi.org/10.14419/ijet.v7i4.30.22019.
Mas, J., et al., Understanding optical trapping phenomena: a simulation for undergraduates. IEEE Transactions on Education, 2010. 54(1): p. 133-140.DOI: https://doi.org/10.1109/TE.2010.2047107.
Hamid, M.Y. and S.K. Ayop, LabVIEW-Based Software for Optical Stiffness Determination Using Boltzmann Statistics, Equipartition Theorem and Power Spectral Density Methods. Advanced Science Letters, 2018. 24(3): p. 1856-1860.DOI: https://doi.org/10.1166/asl.2018.11176.
Nor, W., et al., Simple Determination of the Stiffness of an Optical Trap Using Video Microscopy and Particle Tracking,” Bul. Opt. 2016, vol. 1, no. 2, pp. 1–6,. 2016.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Author
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to:
- Share — copy and redistribute the material in any medium or format for any purpose, even commercially.
- Adapt — remix, transform, and build upon the material for any purpose, even commercially.
- The licensor cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit , provide a link to the license, and indicate if changes were made . You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation .
No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.