Optical Stiffness of an Optically Trapped 4-Cyano-4’-Pentylbiphenyl (5CB) in the form of a Microdroplet in Water

Authors

  • Muhamad Safuan Mat Yeng Department of Physics, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjong Malim, Perak, Malaysia Author
  • Shahrul Kadri Ayop Department of Physics, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjong Malim, Perak, Malaysia Author
  • Izan Roshawaty Mustapa Department of Physics, Faculty of Science and Mathematics, Sultan Idris Education University, 35900 Tanjong Malim, Perak, Malaysia Author
  • Keiji Sasaki Research Institute for Electronic Science, Hokkaido University, 0010020, Sapporo, Japan Author

Keywords:

Optical Trap, Liquid Crystal, 5CB. Microdroplet, Optical Stiffness, Water

Abstract

This study aimed to determine the optical stiffness (

Downloads

Download data is not yet available.

References

Czerwinski, F., A.C. Richardson, and L.B. Oddershede, Quantifying noise in optical tweezers by allan variance. Optics express, 2009. 17(15): p. 13255-13269.DOI: https://doi.org/10.1364/OE.17.013255.

Safuan, M., et al., Thickness Dependant Effective Radius of an Optical Trapping Toward Water- Air Interface,” Int. J. Innov. Technol. Explor. Enginnering, vol. 8, no. 8, pp. 91–93. 2019.

Català, F., et al., Influence of experimental parameters on the laser heating of an optical trap.Scientific Reports, 2017. 7(1): p. 1-9.DOI: https://doi.org/10.1038/s41598-017-15904-6.

Ti, C., et al., Objective-lens-free fiber-based position detection with nanometer resolution in a fiber optical trapping system. Scientific reports, 2017. 7(1): p. 1-10.DOI: https://doi.org/10.1038/s41598-017-13205-6.

Dutra, R.d.S., et al., Theory of optical-tweezers forces near a plane interface. Physical Review A, 2016. 94(5): p. 053848.DOI: https://doi.org/10.1103/PhysRevA.94.053848.

Grier, D.G., A revolution in optical manipulation. nature, 2003. 424(6950): p. 810-816.DOI: https://doi.org/10.1038/nature01935.

Hamid, M.Y., et al., Spatial Distribution of an Optically Trapped Bead in Water. Bul. Opt, 2016.2: p. 1-8.

Selhuber-Unkel, C., et al., Quantitative optical trapping of single gold nanorods. Nano letters, 2008. 8(9): p. 2998-3003.DOI: https://doi.org/10.1021/nl802053h.

Maragò, O.M., et al., Optical trapping of carbon nanotubes. Physica E: Low-dimensional Systems and Nanostructures, 2008. 40(7): p. 2347-2351.DOI: https://doi.org/10.1016/j.physe.2007.10.088.

Miura, A., et al., Optical Trapping–Microspectroscopy of Single Aerosol Microdroplets in Air: Supercooling of Dimethylsulfoxide Microdroplets. The Journal of Physical Chemistry A, 2020. 124(43): p. 9035-9043.DOI: https://doi.org/10.1021/acs.jpca.0c06179.

Yusof, M.F.M., et al., Optical trapping of organic solvents in the form of microdroplets in water.Chemical Physics Letters, 2020. 749: p. 137407.DOI: https://doi.org/10.1016/j.cplett.2020.137407.

Shechter, J., et al., Direct observation of liquid crystal droplet configurational transitions using optical tweezers. Langmuir, 2020. 36(25): p. 7074-7082.DOI: https://doi.org/10.1021/acs.langmuir.9b03629.

Brasselet*, E., et al., Light-induced nonlinear rotations of nematic liquid crystal droplets trapped in laser tweezers. Molecular Crystals and Liquid Crystals, 2009. 512(1): p. 143-1989.DOI: https://doi.org/10.1080/15421400903050780.

Liu, X., et al., Programmable liquid crystal elastomer microactuators prepared via thiol–ene dispersion polymerization. Soft Matter, 2020. 16(21): p. 4908-4911.DOI: https://doi.org/10.1039/D0SM00817F.

Niu, X., et al., Optical biosensor based on liquid crystal droplets for detection of cholic acid. Optics Communications, 2016. 381: p. 286-291.DOI: https://doi.org/10.1016/j.optcom.2016.07.016.

Wang, Z., et al., Bio-electrostatic sensitive droplet lasers for molecular detection. Nanoscale Advances, 2020. 2(7): p. 2713-2719.DOI: https://doi.org/10.1039/D0NA00107D.

Jain, A.K. and R.R. Deshmukh, An overview of polymer-dispersed liquid crystals composite films and their applications. Liq. Cryst. Disp. Technol, 2020: p. 1-68.

Usman, A., et al., Polarization and droplet size effects in the laser-trapping-induced reconfiguration in individual nematic liquid crystal microdroplets. The Journal of Physical Chemistry B, 2013. 117(16): p. 4536-4540.DOI: https://doi.org/10.1021/jp308596h.

Murazawa, N., S. Juodkazis, and H. Misawa, Characterization of bipolar and radial nematic liquid crystal droplets using laser-tweezers. Journal of Physics D: Applied Physics, 2005. 38(16):p. 2923.DOI: https://doi.org/10.1088/0022-3727/38/16/027.

Urbanski, M., et al., Liquid crystals in micron-scale droplets, shells and fibers. Journal of Physics: Condensed Matter, 2017. 29(13): p. 133003.DOI: https://doi.org/10.1088/1361-648X/aa5706.

Phanphak, S., et al., Precession mechanism of nematic liquid crystal droplets under low power optical tweezers. Ferroelectrics, 2014. 468(1): p. 114-122.DOI: https://doi.org/10.1080/00150193.2014.933663.

Murazawa, N., S. Juodkazis, and H. Misawa, Laser manipulation of a smectic liquid-crystal droplet. The European Physical Journal E, 2006. 20(4): p. 435-439.DOI: https://doi.org/10.1140/epje/i2006-10033-1.

Roichman, Y., et al., Optical forces arising from phase gradients. Physical review letters, 2008.100(1): p. 013602.DOI: https://doi.org/10.1103/PhysRevLett.100.013602.

Nieminen, T.A., et al., Optical tweezers: Theory and modelling. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014. 146: p. 59-80.DOI: https://doi.org/10.1016/j.jqsrt.2014.04.003.

M. S. M. Yeng, S.K. Ayop, and I.R. Mustapa, Depth - Dependent Optical Stiffness Toward Water - Air Interface,” Int. J. Eng. Technol., vol. 7, pp. 80–84, 2018. 2018.DOI: https://doi.org/10.14419/ijet.v7i4.30.22019.

Mas, J., et al., Understanding optical trapping phenomena: a simulation for undergraduates. IEEE Transactions on Education, 2010. 54(1): p. 133-140.DOI: https://doi.org/10.1109/TE.2010.2047107.

Hamid, M.Y. and S.K. Ayop, LabVIEW-Based Software for Optical Stiffness Determination Using Boltzmann Statistics, Equipartition Theorem and Power Spectral Density Methods. Advanced Science Letters, 2018. 24(3): p. 1856-1860.DOI: https://doi.org/10.1166/asl.2018.11176.

Nor, W., et al., Simple Determination of the Stiffness of an Optical Trap Using Video Microscopy and Particle Tracking,” Bul. Opt. 2016, vol. 1, no. 2, pp. 1–6,. 2016.

Downloads

Published

2022-01-30

How to Cite

Yeng, M. S. M., Ayop, S. K., Mustapa, I. R., & Sasaki, K. (2022). Optical Stiffness of an Optically Trapped 4-Cyano-4’-Pentylbiphenyl (5CB) in the form of a Microdroplet in Water. CENTRAL ASIA AND THE CAUCASUS, 23(1), 3008-3016. https://ca-c.org/CAC/index.php/cac/article/view/190

Plaudit

Similar Articles

31-40 of 74

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)